Step by Step derivation for the sum of the N2 
Question : How to derive the formula for the sum of n2, which is stated as
 
Solution : We make use of the fact that both equation (1) and (2) as shown below are true. 
              
 
              
 
              
Thus,
 
              
 
              
 
              
 
                    
     
= n3 +
3
 
              
 
 
              
By applying this criteria, We can get the sum of ANY higher integer power, eg.
 
              
Below is a working example to get 
 
              
Again, we make use of the fact that both equation (3) and (4) as shown below are true.
 
              
 
              
 
              
Thus,
 
              
 
              
 
              
 
                          
=
 
              
 
                          
= 
                          
=
              
 
              
 
              [back to solution]
 
 
Step by step derivation for the Sum of n2 and the Sum of higher integer power.
n
∑
k=1 k2 =
?
(n)(n + 1)(2n+1)
6
n
∑
k=1 k3 - 
n
∑
k=1 (k -1)3 = n3
    . . . . . . . . . . . . . . . . . . . . .(1)  [proof]
n
∑
k=1 k3 - 
n
∑
k=1 (k -1)3 = 
n
∑
k=1 (3k2 -3k +1)
    . . . . . . . . . . .(2)  [proof]
n
∑
k=1 (3k2 -3k +1) = n3
3
n
∑
k=1 k2 -
3
n
∑
k=1 k +
n
∑
k=1 1 = n3
3
n
∑
k=1 k2 = n3 + 
3
n
∑
k=1 k -
n
∑
k=1 1
[
(n)(n + 1)
2
] - n
n
∑
k=1 k2 
= 
2n3 +3n(n + 1) -2n
6
= 
n(2n2 +3n+ 1) 
6
= 
n(n +1)(2n+ 1) 
6
 [Shown]
n
∑
k=1 k3
 ,
 
n
∑
k=1 k4
 ,
n
∑
k=1 k5
 ... ...
n
∑
k=1 k3 =
(n)2(n + 1)2
4
n
∑
k=1 k4 - 
n
∑
k=1 (k -1)4 = n4
    . . . . . . . . . . . . . . . . . . . . .(3)  
n
∑
k=1 k3 - 
n
∑
k=1 (k -1)3 = 
n
∑
k=1 (4k3 -6k2 +4k -1)
    . . . . . . . . . . .(4)  
n
∑
k=1 (4k3 -6k2 +4k -1)
= n4
4
n
∑
k=1 k3 -
6
n
∑
k=1 k2 +
4
n
∑
k=1 k -
n
∑
k=1 1 = n4
4
n
∑
k=1 k3 = n4+
6
n
∑
k=1 k2 -
4
n
∑
k=1 k -
n
∑
k=1 1 
n4 
+6[
(n)(n + 1)(2n + 1)
6
]- 
4[
(n)(n + 1)
2
] +n
n
∑
k=1 k3 
=
n4+2n3 + 3n2  + n -2n2 -2n +n
4
n4+2n3 + n2
4
=
n2(2n2 +2n +1)2
4
(n)2(n + 1)2
4
  (Shown)
Appendix
Proof for equation(1):
n
∑
k=1 k3 - 
n
∑
k=1 (k -1)3 
= [(13 +23 +33 +43 +... ... +(n-1)3 +n3] - [(13 +23 +33 +43 +... ... +(n-1)3]
=n3
  [proven]
Proof for equation(2):
n
∑
k=1 k3 - 
n
∑
k=1 (k -1)3 = 
n
∑
k=1 k3 -(k3 -3k2 +3k -1) 
=
n
∑
k=1 (3k2 -3k +1)
  [proven]